Trimmed working portion to slowly implement instead

This commit is contained in:
TriantaTV 2023-03-05 23:23:34 -06:00
parent 8370fa19f1
commit cbdc502193
2 changed files with 134 additions and 134 deletions

View File

@ -56,7 +56,7 @@ namespace tree_implementation
virtual void PrintPathToRoot(std::string key) = 0;
private:
TreeNode* Insert(std::unique_ptr<TreeNode> root, std::unique_ptr<TreeNode> newNode);
TreeNode* Search(std::unique_ptr<TreeNode> viewedNode, std::string wordToFind);
TreeNode* Search(std::unique_ptr<TreeNode>* viewedNode, std::string wordToFind);
};
// Binary Search Tree operations

View File

@ -51,108 +51,108 @@ namespace tree_implementation
// Inserts a node into a BST
void TreeInterface::Insert(std::unique_ptr<TreeNode> z)
{
std::unique_ptr<TreeNode> y(nullptr);
std::unique_ptr<TreeNode> x(tree.head.release());
while (x)
{
y = x.release();
if (z->key < x->key)
x = x->leftChild.release();
else
x = x->rightChild.release();
}
z->parent = y.release();
if (!y)
tree.head = z.release();
else if (z->key < y->key)
y->leftChild = z.release();
else
y->rightChild = z.release();
// std::unique_ptr<TreeNode> y(nullptr);
// std::unique_ptr<TreeNode> x(tree.head.release());
// while (x)
// {
// y = x.release();
// if (z->key < x->key)
// x = x->leftChild.release();
// else
// x = x->rightChild.release();
// }
// z->parent = y.release();
// if (!y)
// tree.head = z.release();
// else if (z->key < y->key)
// y->leftChild = z.release();
// else
// y->rightChild = z.release();
return;
}
// Searches for the given word in a tree
TreeNode* TreeInterface::Search(std::string wordToFind)
{
return _Search(tree.head, wordToFind);
return Search(&tree.head, wordToFind);
}
bool IsSearchSuccessful(std::unique_ptr<TreeNode> foundNode)
bool TreeInterface::IsSearchSuccessful(std::unique_ptr<TreeNode> foundNode)
{
if (foundNode)
return true;
std::cout << "No node found with key '" << foundNode->key << "'\n";
// if (foundNode)
// return true;
// std::cout << "No node found with key '" << foundNode->key << "'\n";
return false;
}
// Prints tree while traversing it
void TreeInterface::InOrderTreeTraversal(std::unique_ptr<TreeNode> viewedNode)
{
if (viewedNode)
InOrderTreeTraversal(viewedNode->leftChild);
std::cout << viewedNode.key << '\n';
InOrderTreeTraversal(viewedNode->rightChild);
// if (viewedNode)
// InOrderTreeTraversal(viewedNode->leftChild);
// std::cout << viewedNode.key << '\n';
// InOrderTreeTraversal(viewedNode->rightChild);
return;
}
// Prints the given word's parent's word if found
void TreeInterface::PrintParentKey(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The parent's word is " << foundNode->parent->key << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The parent's word is " << foundNode->parent->key << '\n';
return;
}
// Prints the given word's left child's word if found
void TreeInterface::PrintLeftChild(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The left child's word is " << foundNode->leftChild->key << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The left child's word is " << foundNode->leftChild->key << '\n';
return;
}
// Prints the given word's right child's word if found
void TreeInterface::PrintRightChild(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The right child's word is " << foundNode->rightChild->key << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The right child's word is " << foundNode->rightChild->key << '\n';
return;
}
// Recursive insertion function for Insert()
TreeNode* TreeInterface::Insert(std::unique_ptr<TreeNode> root, std::unique_ptr<TreeNode> newNode)
{
if (!tree.head)
return newNode.release();
if (newNode->key < root->key)
{
root->leftChild = _Insert(root->leftChild, newNode);
root->leftChild->parent = root.release();
} else if (newNode->key > root->key) {
root->rightChild = _Insert(root->rightChild, newNode);
root->rightChild->parent = root.release();
}
return root.release();
// if (!tree.head)
// return newNode.release();
// if (newNode->key < root->key)
// {
// root->leftChild = Insert(root->leftChild, newNode);
// root->leftChild->parent = root.release();
// } else if (newNode->key > root->key) {
// root->rightChild = Insert(root->rightChild, newNode);
// root->rightChild->parent = root.release();
// }
// return root.release();
}
// Recursive search function for Search()
TreeNode* TreeInterface::Search(std::unique_ptr<TreeNode> viewedNode, std::string wordToFind)
TreeNode* TreeInterface::Search(std::unique_ptr<TreeNode>* viewedNode, std::string wordToFind)
{
if ((!viewedNode) || (wordToFind == viewedNode->key))
return viewedNode.release();
if (wordToFind < viewedNode->key)
return _Search(viewedNode->leftChild, wordToFind);
return _Search(viewedNode->rightChild, wordToFind);
// if ((!viewedNode) || (wordToFind == viewedNode->key))
// return viewedNode.release();
// if (wordToFind < viewedNode->key)
// return Search(viewedNode->leftChild, wordToFind);
// return Search(viewedNode->rightChild, wordToFind);
}
// Insert a node into a BST
void RedBlackTree::Insert(std::string keyToInsert)
void BinarySearchTree::Insert(std::string keyToInsert)
{
std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
TreeInterface::Insert(newNode);
// std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
// TreeInterface::Insert(newNode);
return;
}
@ -160,17 +160,17 @@ namespace tree_implementation
// TODO: Implement printing path to root for BST
void BinarySearchTree::PrintPathToRoot(std::string key)
{
std::unique_ptr<TreeNode> selectedNode = std::move(Search(key));
if (!IsSearchSuccessful(selectedNode)) return;
int timesPrintedOnLine = 0;
std::cout << "Path:\n" << selectedNode->key;
do
{
selectedNode = selectedNode->parent;
std::cout << " -> " << selectedNode->parent->key;
if (timesPrintedOnLine < 10) ++timesPrintedOnLine;
else std::cout << "\n";
} while (selectedNode->parent);
// std::unique_ptr<TreeNode> selectedNode = std::move(Search(key));
// if (!IsSearchSuccessful(selectedNode)) return;
// int timesPrintedOnLine = 0;
// std::cout << "Path:\n" << selectedNode->key;
// do
// {
// selectedNode = selectedNode->parent;
// std::cout << " -> " << selectedNode->parent->key;
// if (timesPrintedOnLine < 10) ++timesPrintedOnLine;
// else std::cout << "\n";
// } while (selectedNode->parent);
return;
}
@ -178,9 +178,9 @@ namespace tree_implementation
// Insert a node into a RBT
void RedBlackTree::Insert(std::string keyToInsert)
{
std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
TreeInterface::Insert(newNode);
InsertFixup(newNode);
// std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
// TreeInterface::Insert(newNode);
// InsertFixup(newNode);
return;
}
@ -194,104 +194,104 @@ namespace tree_implementation
// Print color of word if found in RBT
void RedBlackTree::PrintColor(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << foundNode->color << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The color is " << foundNode->color << '\n';
return;
}
// Print color of word's parent if found in RBT
void RedBlackTree::PrintParentColor(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << foundNode->parent->color << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The color is " << foundNode->parent->color << '\n';
return;
}
// Print color of word's uncle if found in RBT
void RedBlackTree::PrintUncleColor(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << GetUncleNode(foundNode)->color << '\n';
// std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
// if (!IsSearchSuccessful(foundNode)) return;
// std::cout << "The color is " << GetUncleNode(foundNode)->color << '\n';
return;
}
void RedBlackTree::InsertFixup(std::unique_ptr<TreeNode> z)
{
std::unique_ptr<TreeNode> y;
while (z->parent->color == "red")
{
if (z->parent == z->parent->parent->leftChild)
{
y = std::move(z->parent->parent->rightChild);
if (y->color == "red")
{
z->parent->color = "black";
y->color = "black";
z->parent->parent->color = "red";
z = std::move(z->parent->parent);
} else if (z == z->parent->rightChild) {
z = std::move(z->parent);
LeftRotate(z);
z->parent->color = "black";
z->parent->parent->color = "red";
RightRotate(z->parent->parent);
}
} else {
// same as then clause with "right" and "left" exchanged
// TODO: Add else statement
;
}
}
tree.head->color = "black";
// std::unique_ptr<TreeNode> y;
// while (z->parent->color == "red")
// {
// if (z->parent == z->parent->parent->leftChild)
// {
// y = std::move(z->parent->parent->rightChild);
// if (y->color == "red")
// {
// z->parent->color = "black";
// y->color = "black";
// z->parent->parent->color = "red";
// z = std::move(z->parent->parent);
// } else if (z == z->parent->rightChild) {
// z = std::move(z->parent);
// LeftRotate(z);
// z->parent->color = "black";
// z->parent->parent->color = "red";
// RightRotate(z->parent->parent);
// }
// } else {
// // same as then clause with "right" and "left" exchanged
// // TODO: Add else statement
// ;
// }
// }
// tree.head->color = "black";
return;
}
// Returns the uncle node in RBT
std::unique_ptr<TreeNode> RedBlackTree::GetUncleNode(std::unique_ptr<TreeNode> startNode)
{
if (startNode->parent == startNode->parent->parent->leftChild)
return std::move(startNode->parent->parent->rightChild);
return std::move(startNode->parent->parent->leftChild);
// if (startNode->parent == startNode->parent->parent->leftChild)
// return std::move(startNode->parent->parent->rightChild);
// return std::move(startNode->parent->parent->leftChild);
}
// Performs left rotate on a given node
void RedBlackTree::LeftRotate(std::unique_ptr<TreeNode> x)
{
std::unique_ptr<TreeNode> y(std::move(x->rightChild));
x->rightChild = std::move(y->leftChild);
if (y->rightChild)
y->rightChild->parent = std::move(x);
y->parent = std::move(x->parent);
if (!x->parent)
tree.head = std::move(y);
else if (x == x->parent->leftChild)
x->parent->leftChild = std::move(y);
else
x->parent->rightChild = std::move(y);
y->leftChild = std::move(x);
x->parent = std::move(y);
// std::unique_ptr<TreeNode> y(std::move(x->rightChild));
// x->rightChild = std::move(y->leftChild);
// if (y->rightChild)
// y->rightChild->parent = std::move(x);
// y->parent = std::move(x->parent);
// if (!x->parent)
// tree.head = std::move(y);
// else if (x == x->parent->leftChild)
// x->parent->leftChild = std::move(y);
// else
// x->parent->rightChild = std::move(y);
// y->leftChild = std::move(x);
// x->parent = std::move(y);
return;
}
// Performs right rotate on a given node
void RedBlackTree::RightRotate(std::unique_ptr<TreeNode> x)
{
std::unique_ptr<TreeNode> y(std::move(x->rightChild));
x->rightChild = std::move(y->leftChild);
if (y->leftChild)
y->leftChild->parent = std::move(x);
y->parent = std::move(x->parent);
if (!x->parent)
tree.head = std::move(y);
else if (x == x->parent->leftChild)
x->parent->leftChild = std::move(y);
else
x->parent->rightChild = std::move(y);
y->leftChild = std::move(x);
x->parent = std::move(y);
// std::unique_ptr<TreeNode> y(std::move(x->rightChild));
// x->rightChild = std::move(y->leftChild);
// if (y->leftChild)
// y->leftChild->parent = std::move(x);
// y->parent = std::move(x->parent);
// if (!x->parent)
// tree.head = std::move(y);
// else if (x == x->parent->leftChild)
// x->parent->leftChild = std::move(y);
// else
// x->parent->rightChild = std::move(y);
// y->leftChild = std::move(x);
// x->parent = std::move(y);
return;
}
}