Why are the unique pointers annoying to use

This commit is contained in:
TriantaTV 2023-03-05 23:13:34 -06:00
parent f3de22da46
commit 8370fa19f1
2 changed files with 298 additions and 50 deletions

View File

@ -1,37 +1,69 @@
#ifndef TREES_HPP
#define TREES_HPP
#include <memory>
#include <string>
#include <vector>
// Namespace for different implementations of trees
namespace tree_implementation
{
// Base Tree class
class Tree
// General nodes for Tree
struct TreeNode
{
std::string key;
std::string color;
std::unique_ptr<TreeNode> leftChild;
std::unique_ptr<TreeNode> rightChild;
std::unique_ptr<TreeNode> parent;
TreeNode(std::string word);
~TreeNode(void);
TreeNode(const TreeNode& rhs);
TreeNode& operator=(const TreeNode& rhs);
};
// General list for Tree
class TreeList
{
public:
Tree(void);
void Insert(void);
void Search(void);
void InOrderTreeTraversal(void);
std::unique_ptr<TreeNode> head;
TreeList(void);
void InsertAtStart(std::string word);
void InsertAtEnd(std::string word);
void InsertAtPosition(std::string word);
void Remove(std::string word);
void Print(void);
protected:
virtual void PrintParentKey(std::string key) = 0;
virtual void PrintLeftChild(std::string key) = 0;
virtual void PrintRightChild(std::string key) = 0;
virtual void PrintPathToRoot(std::string key) = 0;
;
private:
;
};
// Binary Search Tree operations
// TODO: Implement BST
class BinarySearchTree : public Tree
// Base Tree class
class TreeInterface
{
public:
TreeList tree;
TreeInterface(void);
TreeNode* Search(std::string wordToFind);
bool IsSearchSuccessful(std::unique_ptr<TreeNode> foundNode);
void InOrderTreeTraversal(std::unique_ptr<TreeNode> viewedNode);
void PrintParentKey(std::string key);
void PrintLeftChild(std::string key);
void PrintRightChild(std::string key);
protected:
virtual void Insert(std::unique_ptr<TreeNode> z);
virtual void PrintPathToRoot(std::string key) = 0;
private:
TreeNode* Insert(std::unique_ptr<TreeNode> root, std::unique_ptr<TreeNode> newNode);
TreeNode* Search(std::unique_ptr<TreeNode> viewedNode, std::string wordToFind);
};
// Binary Search Tree operations
class BinarySearchTree : public TreeInterface
{
public:
void Insert(std::string keyToInsert);
void PrintPathToRoot(std::string key);
protected:
;
@ -40,13 +72,10 @@ namespace tree_implementation
};
// Red-Black Tree operations
// TODO: Implement Red-black tree
class RedBlackTree : public Tree
class RedBlackTree : public TreeInterface
{
public:
void PrintParentKey(std::string key);
void PrintLeftChild(std::string key);
void PrintRightChild(std::string key);
void Insert(std::string keyToInsert);
void PrintPathToRoot(std::string key);
void PrintColor(std::string key);
void PrintParentColor(std::string key);
@ -54,7 +83,10 @@ namespace tree_implementation
protected:
;
private:
;
void InsertFixup(std::unique_ptr<TreeNode> z);
std::unique_ptr<TreeNode> GetUncleNode(std::unique_ptr<TreeNode> startNode);
void LeftRotate(std::unique_ptr<TreeNode> x);
void RightRotate(std::unique_ptr<TreeNode> x);
};
}

View File

@ -1,81 +1,297 @@
#include "trees.hpp"
#include <iostream>
#include <memory>
#include <string>
#include <vector>
namespace tree_implementation
{
Tree::Tree(void)
TreeNode::TreeNode(std::string word)
{
;
key = word;
color = "red";
leftChild = nullptr;
rightChild = nullptr;
this->parent = nullptr;
return;
}
void Tree::Insert(void)
TreeNode::~TreeNode(void)
{
;
return;
}
void Tree::Search(void)
TreeNode::TreeNode(const TreeNode& rhs)
{
;
key = rhs.key;
color = rhs.color;
return;
}
void Tree::InOrderTreeTraversal(void)
TreeNode& TreeNode::operator=(const TreeNode& rhs)
{
;
key = rhs.key;
color = rhs.color;
return *this;
}
void BinarySearchTree::PrintParentKey(std::string key)
TreeList::TreeList(void)
{
;
head = nullptr;
return;
}
void BinarySearchTree::PrintLeftChild(std::string key)
TreeInterface::TreeInterface(void)
{
;
return;
}
void BinarySearchTree::PrintRightChild(std::string key)
// Inserts a node into a BST
void TreeInterface::Insert(std::unique_ptr<TreeNode> z)
{
;
std::unique_ptr<TreeNode> y(nullptr);
std::unique_ptr<TreeNode> x(tree.head.release());
while (x)
{
y = x.release();
if (z->key < x->key)
x = x->leftChild.release();
else
x = x->rightChild.release();
}
z->parent = y.release();
if (!y)
tree.head = z.release();
else if (z->key < y->key)
y->leftChild = z.release();
else
y->rightChild = z.release();
return;
}
// Searches for the given word in a tree
TreeNode* TreeInterface::Search(std::string wordToFind)
{
return _Search(tree.head, wordToFind);
}
bool IsSearchSuccessful(std::unique_ptr<TreeNode> foundNode)
{
if (foundNode)
return true;
std::cout << "No node found with key '" << foundNode->key << "'\n";
return false;
}
// Prints tree while traversing it
void TreeInterface::InOrderTreeTraversal(std::unique_ptr<TreeNode> viewedNode)
{
if (viewedNode)
InOrderTreeTraversal(viewedNode->leftChild);
std::cout << viewedNode.key << '\n';
InOrderTreeTraversal(viewedNode->rightChild);
return;
}
// Prints the given word's parent's word if found
void TreeInterface::PrintParentKey(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The parent's word is " << foundNode->parent->key << '\n';
return;
}
// Prints the given word's left child's word if found
void TreeInterface::PrintLeftChild(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The left child's word is " << foundNode->leftChild->key << '\n';
return;
}
// Prints the given word's right child's word if found
void TreeInterface::PrintRightChild(std::string key)
{
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The right child's word is " << foundNode->rightChild->key << '\n';
return;
}
// Recursive insertion function for Insert()
TreeNode* TreeInterface::Insert(std::unique_ptr<TreeNode> root, std::unique_ptr<TreeNode> newNode)
{
if (!tree.head)
return newNode.release();
if (newNode->key < root->key)
{
root->leftChild = _Insert(root->leftChild, newNode);
root->leftChild->parent = root.release();
} else if (newNode->key > root->key) {
root->rightChild = _Insert(root->rightChild, newNode);
root->rightChild->parent = root.release();
}
return root.release();
}
// Recursive search function for Search()
TreeNode* TreeInterface::Search(std::unique_ptr<TreeNode> viewedNode, std::string wordToFind)
{
if ((!viewedNode) || (wordToFind == viewedNode->key))
return viewedNode.release();
if (wordToFind < viewedNode->key)
return _Search(viewedNode->leftChild, wordToFind);
return _Search(viewedNode->rightChild, wordToFind);
}
// Insert a node into a BST
void RedBlackTree::Insert(std::string keyToInsert)
{
std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
TreeInterface::Insert(newNode);
return;
}
// Prints the path to root in a BST
// TODO: Implement printing path to root for BST
void BinarySearchTree::PrintPathToRoot(std::string key)
{
;
std::unique_ptr<TreeNode> selectedNode = std::move(Search(key));
if (!IsSearchSuccessful(selectedNode)) return;
int timesPrintedOnLine = 0;
std::cout << "Path:\n" << selectedNode->key;
do
{
selectedNode = selectedNode->parent;
std::cout << " -> " << selectedNode->parent->key;
if (timesPrintedOnLine < 10) ++timesPrintedOnLine;
else std::cout << "\n";
} while (selectedNode->parent);
return;
}
void RedBlackTree::PrintParentKey(std::string key)
// Insert a node into a RBT
void RedBlackTree::Insert(std::string keyToInsert)
{
;
}
void RedBlackTree::PrintLeftChild(std::string key)
{
;
}
void RedBlackTree::PrintRightChild(std::string key)
{
;
std::unique_ptr<TreeNode> newNode = new TreeNode(keyToInsert);
TreeInterface::Insert(newNode);
InsertFixup(newNode);
return;
}
// Print path to root in RBT
// TODO: Implement printing path to root for RBT
void RedBlackTree::PrintPathToRoot(std::string key)
{
;
return;
}
// Print color of word if found in RBT
void RedBlackTree::PrintColor(std::string key)
{
;
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << foundNode->color << '\n';
return;
}
// Print color of word's parent if found in RBT
void RedBlackTree::PrintParentColor(std::string key)
{
;
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << foundNode->parent->color << '\n';
return;
}
// Print color of word's uncle if found in RBT
void RedBlackTree::PrintUncleColor(std::string key)
{
;
std::unique_ptr<TreeNode> foundNode = std::move(Search(key));
if (!IsSearchSuccessful(foundNode)) return;
std::cout << "The color is " << GetUncleNode(foundNode)->color << '\n';
return;
}
void RedBlackTree::InsertFixup(std::unique_ptr<TreeNode> z)
{
std::unique_ptr<TreeNode> y;
while (z->parent->color == "red")
{
if (z->parent == z->parent->parent->leftChild)
{
y = std::move(z->parent->parent->rightChild);
if (y->color == "red")
{
z->parent->color = "black";
y->color = "black";
z->parent->parent->color = "red";
z = std::move(z->parent->parent);
} else if (z == z->parent->rightChild) {
z = std::move(z->parent);
LeftRotate(z);
z->parent->color = "black";
z->parent->parent->color = "red";
RightRotate(z->parent->parent);
}
} else {
// same as then clause with "right" and "left" exchanged
// TODO: Add else statement
;
}
}
tree.head->color = "black";
return;
}
// Returns the uncle node in RBT
std::unique_ptr<TreeNode> RedBlackTree::GetUncleNode(std::unique_ptr<TreeNode> startNode)
{
if (startNode->parent == startNode->parent->parent->leftChild)
return std::move(startNode->parent->parent->rightChild);
return std::move(startNode->parent->parent->leftChild);
}
// Performs left rotate on a given node
void RedBlackTree::LeftRotate(std::unique_ptr<TreeNode> x)
{
std::unique_ptr<TreeNode> y(std::move(x->rightChild));
x->rightChild = std::move(y->leftChild);
if (y->rightChild)
y->rightChild->parent = std::move(x);
y->parent = std::move(x->parent);
if (!x->parent)
tree.head = std::move(y);
else if (x == x->parent->leftChild)
x->parent->leftChild = std::move(y);
else
x->parent->rightChild = std::move(y);
y->leftChild = std::move(x);
x->parent = std::move(y);
return;
}
// Performs right rotate on a given node
void RedBlackTree::RightRotate(std::unique_ptr<TreeNode> x)
{
std::unique_ptr<TreeNode> y(std::move(x->rightChild));
x->rightChild = std::move(y->leftChild);
if (y->leftChild)
y->leftChild->parent = std::move(x);
y->parent = std::move(x->parent);
if (!x->parent)
tree.head = std::move(y);
else if (x == x->parent->leftChild)
x->parent->leftChild = std::move(y);
else
x->parent->rightChild = std::move(y);
y->leftChild = std::move(x);
x->parent = std::move(y);
return;
}
}