Initial file setup for project
This commit is contained in:
parent
c872462c97
commit
8f62df2f1f
@ -1,7 +1,7 @@
|
|||||||
cmake_minimum_required(VERSION 3.10)
|
cmake_minimum_required(VERSION 3.10)
|
||||||
|
|
||||||
project(
|
project(
|
||||||
n-queens
|
n_queens
|
||||||
LANGUAGES CXX)
|
LANGUAGES CXX)
|
||||||
|
|
||||||
set(CMAKE_CXX_STANDARD 11 CACHE STRING "The C++ standard to use")
|
set(CMAKE_CXX_STANDARD 11 CACHE STRING "The C++ standard to use")
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
add_executable(n-queens
|
add_executable(n_queens
|
||||||
./n-queens.cpp
|
./n_queens.cpp
|
||||||
|
./chess.cpp
|
||||||
|
./genetic_algorithm.cpp
|
||||||
)
|
)
|
||||||
|
|
||||||
target_include_directories(n-queens PUBLIC ${CMAKE_CURRENT_LIST_DIR})
|
target_include_directories(n_queens PUBLIC ${CMAKE_CURRENT_LIST_DIR})
|
||||||
|
|
||||||
|
0
src/chess.hpp
Normal file
0
src/chess.hpp
Normal file
145
src/genetic_algorithm.cpp
Normal file
145
src/genetic_algorithm.cpp
Normal file
@ -0,0 +1,145 @@
|
|||||||
|
#include "genetic_algorithm.hpp"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
/* Prints the population strings in a line */
|
||||||
|
void print_population(unsigned char population_in[]) {
|
||||||
|
int iterator = 0;
|
||||||
|
int member_count = 0;
|
||||||
|
char cur_member;
|
||||||
|
while (member_count < N){
|
||||||
|
cur_member = population_in[member_count];
|
||||||
|
while (iterator < L){
|
||||||
|
if (cur_member & 0x80){
|
||||||
|
printf("1");
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
printf("0");
|
||||||
|
}
|
||||||
|
cur_member = cur_member << 1;
|
||||||
|
iterator++;
|
||||||
|
}
|
||||||
|
member_count++;
|
||||||
|
iterator = 0;
|
||||||
|
printf(" ");
|
||||||
|
}
|
||||||
|
printf("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Fitness is determined by the number of
|
||||||
|
1's in the bitstring. */
|
||||||
|
int get_fitness(unsigned char string_in){
|
||||||
|
int count = 0;
|
||||||
|
unsigned char temp = string_in;
|
||||||
|
while (temp){
|
||||||
|
if (temp & 0x01){
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
temp = temp >> 1;
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Randomly initialize the first population */
|
||||||
|
void init_population(unsigned char* population){
|
||||||
|
int i;
|
||||||
|
for ( i=0; i<N; i++){
|
||||||
|
population[i] = (char)(rand() % 0xFF);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* Perform selection of population members based on fitness */
|
||||||
|
void do_selection(unsigned char* population, int* selected){
|
||||||
|
int fitness[N] = {0};
|
||||||
|
int fitness_sum = 0;
|
||||||
|
int i, j;
|
||||||
|
// get fitness for all members of population
|
||||||
|
for ( i=0; i<N; i++ ){
|
||||||
|
fitness[i] = get_fitness(population[i]);
|
||||||
|
fitness_sum += fitness[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// this is simple fitness proportional selection
|
||||||
|
// (roulette wheel sampling)
|
||||||
|
int roll;
|
||||||
|
int temp_sum = 0;
|
||||||
|
int selection;
|
||||||
|
for ( i=0; i<N; i++ ){
|
||||||
|
temp_sum = 0;
|
||||||
|
roll = rand()%fitness_sum;
|
||||||
|
for ( j=0; j<N; j++ ){
|
||||||
|
temp_sum += fitness[j];
|
||||||
|
if ( roll < temp_sum ){
|
||||||
|
selection = j;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
selected[i] = selection;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* compute a mask to use when crossing over parents*/
|
||||||
|
unsigned char get_mask(int locus_in){
|
||||||
|
int i = 0;
|
||||||
|
unsigned char ret;
|
||||||
|
for( i=0; i<locus_in; i++ ){
|
||||||
|
ret = ret << 1;
|
||||||
|
ret ^= 0x01;
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* crossover members with probability P_c
|
||||||
|
if no crossover, then clone parents */
|
||||||
|
void do_crossover(unsigned char* population, int* selected){
|
||||||
|
double crossover_roll;
|
||||||
|
int crossover_locus;
|
||||||
|
int i;
|
||||||
|
unsigned char temp1;
|
||||||
|
unsigned char temp2;
|
||||||
|
unsigned char mask;
|
||||||
|
unsigned char temp_population[N];
|
||||||
|
|
||||||
|
for ( i=0; i<N; i+=2){
|
||||||
|
crossover_roll = ((double)rand())/((double)RAND_MAX);
|
||||||
|
temp1 = 0;
|
||||||
|
temp2 = 0;
|
||||||
|
if(crossover_roll <= P_c){ //crossover
|
||||||
|
crossover_locus = rand()%L;
|
||||||
|
mask = get_mask(crossover_locus);
|
||||||
|
temp1 = population[selected[i]] & mask;
|
||||||
|
temp1 ^= population[selected[i+1]] & ~mask;
|
||||||
|
temp2 = population[selected[i+1]] & mask;
|
||||||
|
temp2 ^= population[selected[i]] & ~mask;
|
||||||
|
temp_population[i] = temp1;
|
||||||
|
temp_population[i+1] = temp2;
|
||||||
|
}
|
||||||
|
else{ //clone
|
||||||
|
temp_population[i] = population[selected[i]];
|
||||||
|
temp_population[i+1] = population[selected[i+1]];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
//copy back to population
|
||||||
|
for ( i=0; i<N; i++ ){
|
||||||
|
population[i] = temp_population[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void do_mutation(unsigned char* population){
|
||||||
|
double mutation_roll;
|
||||||
|
int i, j;
|
||||||
|
for ( i=0; i<N; i++){
|
||||||
|
for ( j=0; j<L; j++ ){
|
||||||
|
mutation_roll = ((double)rand())/((double)RAND_MAX);
|
||||||
|
if ( mutation_roll <= P_m ){
|
||||||
|
population[i] ^= (1<<j); //toggle bit
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
19
src/genetic_algorithm.hpp
Normal file
19
src/genetic_algorithm.hpp
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
#ifndef GENETIC_ALGORITHM_HPP
|
||||||
|
#define GENETIC_ALGORITHM_HPP
|
||||||
|
|
||||||
|
#define P_c 0.7 //crossover probability (typical val.)
|
||||||
|
#define P_m 0.001 //mutation probability (typical val.)
|
||||||
|
#define N 8 //population size (change to something even)
|
||||||
|
#define L 8 //string length (don't change)
|
||||||
|
#define G 10000 //number of generations (something huge)
|
||||||
|
|
||||||
|
void print_population(unsigned char population_in[]);
|
||||||
|
int get_fitness(unsigned char string_in);
|
||||||
|
void init_population(unsigned char* population);
|
||||||
|
void do_selection(unsigned char* population, int* selected);
|
||||||
|
unsigned char get_mask(int locus_in);
|
||||||
|
void do_crossover(unsigned char* population, int* selected);
|
||||||
|
void do_mutation(unsigned char* population);
|
||||||
|
|
||||||
|
#endif // GENETIC_ALGORITHM_HPP
|
||||||
|
|
35
src/n_queens.cpp
Normal file
35
src/n_queens.cpp
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
#include "chess.hpp"
|
||||||
|
#include "genetic_algorithm.hpp"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
|
||||||
|
int main(){
|
||||||
|
unsigned char population[N] = {0};
|
||||||
|
int selected[N] = {-1};
|
||||||
|
int generation_count = 0;
|
||||||
|
int i;
|
||||||
|
srand(time(NULL));
|
||||||
|
|
||||||
|
|
||||||
|
//basic genetic algorithm skeleton
|
||||||
|
init_population(population);
|
||||||
|
print_population(population);
|
||||||
|
|
||||||
|
while (generation_count < G) {
|
||||||
|
do_selection(population, selected);
|
||||||
|
do_crossover(population, selected);
|
||||||
|
do_mutation(population);
|
||||||
|
printf("%4d: ", generation_count);
|
||||||
|
print_population(population);
|
||||||
|
for (i = 0; i < N; i++) {
|
||||||
|
if (population[i] == 0xFF) {
|
||||||
|
printf("Max fit reached.\n");
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
generation_count++;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user